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Lawrence Livermore National Laboratory, Livermore, CA

Abstract
Numerical simulations are used to visualize the mixing and combustion induced by explosions of
spherical and cylindrical TNT charges.  Evolution of the exothermic energy is controlled by mixing
(vorticity), which is strongly influenced by wave reflections from confining walls.

Approach

Described here are numerical simulations of combustion in explosions created by the
detonation of solid TNT charges in air.  The problem was formulated as turbulent combustion in
unmixed gases (Zel'dovich, 1949), where the expanded TNT detonation products play the role of
a fuel.  We consider the limit of large Reynolds, Peclet and Damköhler numbers— where
molecular transport processes are negligible.  This perspective results in a gasdynamic Model of
combustion in explosions (Kuhl et al, 1997 & 1999).  The Model equations were integrated
numerically by a higher-order Godunov scheme (Colella & Glaz, 1985).  A block-structured,
Adaptive Mesh Refinement algorithm (Bell et al, 1994) was used to resolve the energy-bearing
scales of turbulent mixing on the computational grid.  The effects of mixing and combustion
were visualized by displays of material fields (yellow=Fuel, blue=Air & red= Products), vorticity
and dilatation contours, and exothermic fields (white stars) as shown in the accompanying
figures.

Visualization
The detonation wave in the TNT charge transforms the solid explosive (C7H5N3O6) to

gaseous products that are rich in carbon solid and carbon monoxide.  The 210-kbar detonation
pressure causes the products to expand rapidly, driving a blast wave into the surrounding air
(Brode, 1959).  The interface between the products and air is unstable (Meshkov, 1960), and
rapidly evolves into a turbulent mixing layer (Anisimov & Zel'dovich, 1977; Kuhl, 1996)
illustrated in Fig. 1.  The blast wave contains an embedded shock (inside the TNT interface),
which draws the Taylor cavities into the origin as it implodes.  Thus air becomes distributed
throughout the hot detonation products gases causing rapid combustion as shown in Fig. 2.

Figure 3 presents the details of the flow field for the corresponding confined-explosion
case at an earlier scaled time ( t = 0.01ms / g1 / 3).  There one can observe the main shock, its initial
reflection from the chamber walls, and its interaction with embedded shock.  Combustion occurs
in the fine-scale mixing structures on the TNT interface.  For spherical charges, vorticity
concentrates in rings (Fig. 4), which causes the mixing structures to acquire a mushroom-shaped
form (Fig. 3).  As time progresses, the vortex rings interact, forming successively more and more
complex mixing structures.

Figure 5 illustrates the flow field from a cylindrical TNT charge in a cylindrical enclosure
at somewhat later times ( t = 0.2 &  0.5ms / g1 / 3).  The corresponding blowup views (Fig. 6)
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show details of the flow field near a large combustion structure.  In the limit of large Peclet and
Damköhler numbers considered here, combustion is concentrated in thin exothermic sheets.
Expansion of combustion products along a sheet induces vorticity layers on either side of the
sheet—forming, in effect, an exothermic doublet that continues to supply fuel and oxidizer to the
combustion process through local entrainment.

Figure 7 shows an 3-D view of the corresponding vorticity field.  For cylindrical charges,
vorticity concentrates into filaments  that interact forming hairpin structures  where the vorticity
becomes unbounded.  This signals the transition to fully developed turbulent flow (Bell &
Marcus, 1992) via the baroclinic mechanism.

Figure 8 depicts the pressure history on the chamber wall from the 3-D AMR simulation
compared with the experimental measurement; agreement is excellent, especially for
comparisons of point measurements in 3-D turbulent fields.  The corresponding case of a
nitrogen atmosphere (i.e., explosion only) illustrates the dramatic effect that combustion creates
in such confined explosions.

To systematically explore the effect of confinement, simulations were performed in four
geometrically similar chambers (right circular cylinders with H = D, 1: D1 = 12cm & V1 = 1.4l ,
2: D2 = 20cm & V2 = 6.3l, 3: D3 = 40cm & V3 = 50l, 4: D4 = 80cm & V4 = 402l).   Figures 9 and
10 visualize the evolution of combustion in the four cases, where rows correspond to cases and
columns represent fixed times.  They show that shock reflections from chamber walls stir up the
mixing layer, thereby changing the burning rate.

The chamber pressure histories for the four cases are plotted in Fig. 11.  It shows that
combustion increases the late-time overpressure by 3.5 times (if there is enough oxygen available
to oxidize all the fuel, i.e., Cases 2-4).  The corresponding fuel consumption curves are presented
in Fig. 12, illustrating that the burning rate depends on chamber side.

Résumé

These numerical simulations illustrate a combustion regime that is controlled by turbulent
mixing, in contrast to the conventional reaction-diffusion mechanism first proposed by
Zel'dovich & Frank-Kamenetskii (1938).
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Figure 1. Mixing in an unconfined explosion of a 1-g TNT sphere in air (density contours at
t = 0.144ms ).
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Figure 2. Combustion in an unconfined explosion of a 1-g TNT sphere in air ( t = 0.144ms ).
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Figure 3. Combustion of the detonation products from a 1-kg TNT sphere in a cylindrical
calorimeter filled with air ( t = 0.01ms / g1 / 3).
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Figure 4. Vorticity concentration into vortex rings on the HE-air interface formed during
combustion of a 1-kg TNT sphere in a cubical calorimeter.
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Figure 5. Combustion of detonation products from a 0.9-kg TNT cylinder in a 16.6 m3

cylindrical tank; overall view of the flow field at t = 0.2 &  0.5ms / g1 / 3.

Figure 6. Blow-up views of the flow field near a large combustion structure.
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Figure 7. Vorticity filamentation during the combustion of a 1-kg TNT cylinder (see Fig. 5).
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Figure 8. Comparison of calculated static pressure history on the wall with data for combustion
of a 0.9-kg TNT cylinder shown in Figures 5-7.
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Case 1: t = 0.02 ms Case 1: t = 0.05 ms Case 1: t = 0.20 ms

Case 2: t = 0.02 ms Case 2: t = 0.05 ms Case 2: t = 0.20 ms

Case 3: t = 0.02 ms Case 3: t = 0.05 ms Case 3: t = 0.20 ms

Case 4: t = 0.02 ms Case 4: t = 0.05 ms Case 4: t = 0.20 ms



Khariton Readings: Extreme States of Matter
VNIIEF, Sarov

11

Figure 9. Early-time evolution of combustion of detonation products from a 1-g TNT sphere with
air in different chambers (1: D1 = 12cm , 2: D2 = 20cm , 3: D3 = 40cm , 4: D4 = 80cm ).
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Case 1: t = 0.60 ms Case 1: t = 1 ms Case 1: t = 1.6 ms

Case 2: t = 0.60 ms Case 2: t = 1 ms Case 2: t = 3.6 ms

Case 3: t = 0.60 ms Case 3: t = 1 ms Case 3: t = 4 ms

Case 4: t = 0.60 ms Case 4: t = 1 ms Case 4: t = 4 ms
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Figure 10. Late-time evolution of the combustion of TNT detonation products corresponding to
Fig. 9.
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Figure 11. Mean pressure histories for combustion TNT products in various chambers shown in
Figs. 9 & 10 (E = explosion & C = combustion).
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Figure 12. Mass-fraction of fuel consumed by combustion for Cases 1-4.




